John Cooper Long Range Planning R&D Session

Why on earth would anyone want a <u>neutrino</u> testbeam?

Consider Off-Axis NuMI

- 50 kton detector (10 x MINOS, many \$), 5 years of running, see about 250 v_{μ} events oscillating to v_{e} with θ_{13} at the Chooz limit
 - Wouldn't it be a reasonable idea to look at tagged v_e events in smaller prototype detector(s) to learn what these events really look like?
 - Or do you always trust your Monte Carlo?
 - Do you always trust your detector design?
 - Colliders have typically tested few% prototypes of their calorimeters in testbeams of protons, pions, electrons, muons. With Neutrino detectors now at the same \$ scale,...
- Backgrounds to 2 GeV v_e oscillation events
 - Intrinsic v_e in the beam
 - Feed-down of higher energy v_{μ} Neutral Current events (with a π^0) to fake v_e events
 - Could we get a pure sample, i.e. **KNOWN** NC events in a testbeam?

Tests of Liquid Argon TPCs for far future neutrino proposals?

Remember it's far easier to get approval for testbeam time than it is to get approved to do a
physics measurement

How do you get a **Neutrino** Test Beam?

- The Debuncher is a muon storage ring neutrino source
 - $\gamma \tau_{\pi} \sim 1$ turn, so pions ($\rightarrow v_{u}$) for first 2-3 turns
 - $\gamma \tau_u \sim 117$ turns, so muons ($\rightarrow \nu_u$ and $\overline{\nu}_e$) for 150-200 turns
 - It's always on when stacking and we are "always" stacking through 2013
- History
 - > Proposal 860 from W.Y. Lee in 1992
 - Not approved, sufficient statistics required positive polarity in conflict with Colliders
 - But these guys measured muon yield and calculated energy spectra
 - A. Bross et al., NIM A332, 27-31 (1993)
 - ➤ Geer @ Snowmass 2001 & Fermilab note FN-706
 - Measure low energy v cross sections?
 - But the laboratory only got proposals for the NuMI Near Hall & MiniBooNE beams
 - Steve also suggested detector R&D
 - This talk has contributions from P-860, Bross et al., S. Geer, and
 P. Derwent, S. Dixon, B. Fleming, H. Jostlein, A. Para, T. Lackowski

Debuncher Neutrino Energy Spectra

for +- 10 mrad cone forward

• Get 20 π 's for every pbar produced

This is a two body decay, so angle & Energy are correlated at your prototype detector, giving a handle on the Neutral Currents

• Get 1 μ for every pbar produced

Actually get "Tagged" v_{μ} and $\overline{v_e}$

NO. OF NEUTRINOS

- Muons captured in the Debuncher have to be within +- 2% of the momentum aperture, so only forward decays survive. V-A means that the muons are polarized
- Muon spin precesses in the magnetic field
 - Spin precession period ~20 turns
 - So there is a time separation of v_{μ} and $\overline{v_{e}}$
- THIS BEGINS TO LOOK LIKE A TEST BEAM!

Also note the FIRST turn is very dominantly from π decay (no μ 's yet)

Debuncher: Neutrino Test Beam

+- 10 mrad gives a spot size about 2 meters in diameter

Actually we have **two** parasitic neutrino beams

they cross, missing by 8 feet vertically)

MiniBooNE Beam properties

30 mrad at about 170 meters gives a spot size of about 10 meters in diameter

Approximate Event Rates

500 Tons, one year

Debuncher			
Year	Anti ν_e	ν_{μ}	Anti ν_{μ} from pions
2003	1,800	4,000	50,000
2004	2,300	5,300	66,000
"base"	7,300	16,700	210,000
"design"	9,700	22,300	280,000

Mini-	But	
Boone	assumes	
	the	
	whole	
	beam	
	10 ²⁰	ν _μ QE
	POT	μ
2003	1.5	75,000
2004	5.0	250,000
With	2.5	125,000
NuMI		

The beam is free, but we need an enclosure

Return to the thrilling days of yesteryear (cheap) Sheet piling enclosure like PC4 (SELEX site)

Roof made of 40-ft containers (again cheapest)

Such an enclosure is about \$ 10 K / linear foot, fully loaded cost

Relative Debuncher – Booster timing

\$12 Booster Prepulse (need 2 before beam pulse)

\$14 Beam to MI for ploar target

\$1D Beam to MiniBoone target up to 10 in a row

Scenario as of Fall 2003

Neutrinos from debuncher and neutrinos from MiniBoone separated by 1 15 Hz tick (6.7 msec)

Scenario with Slip Stacking (implemented 2004) additional \$14 before first \$1D

Neutrinos from debuncher and neutrinos from MiniBoone overlap on last 15 Hz tick